Monatshefte für Chemie 103, 1560—1571 (1972) © by Springer-Verlag 1972

Die Kristallstruktur von Ge₅O[PO₄]₆

Von

Helmut Mayer und H. Völlenkle

Aus dem Institut für Mineralogie, Kristallographie und Strukturchemie der Technischen Hochschule Wien, Getreidemarkt 9, A-1060 Wien

Mit 2 Abbildungen

(Eingegangen am 15. Dezember 1971)

The Crystal Structure of Ge₅O[PO₄]₆

The crystal structure of Ge₅O[PO₄]₆ has been determined and refined by least-squares, using three-dimensional x-ray data from *Weissenberg*-photographs: space group $R\bar{3}$; $a = 7.994 \pm 0.004$ and $c = 24.87 \pm 0.01$ Å; Z = 3; 467 independent reflections; R = 0.086.

The crystal structure consists of isolated [GeO₆] octahedra and [Ge₂O₇] double tetrahedra which are linked by [PO₄] groups forming a three-dimensional network. The average interatomic distances are: Ge^[6]—O = 1.863, Ge^[4]—O = 1.704 and P—O = 1.525 Å.

Die Kristallstruktur der Verbindung Ge₅O[PO₄]₆ wurde auf Grund dreidimensionaler Einkristalldaten aus Weissenberg-Aufnahmen ermittelt und nach der Methode der kleinsten Quadrate verfeinert: Raumgruppe R $\overline{3}$; $a = 7,994 \pm 0,004$ und $c = 24,87 \pm 0,01$ Å; Z = 3; 467 unabhängige Reflexe; R = 0,086.

Die Kristallstruktur wird aus singulären [GeO₆]-Oktaedern und [Ge₂O₇]-Doppeltetraedern aufgebaut, die über [PO₄]-Tetraeder zu einem dreidimensionalen Strukturverband vernetzt sind. Die mittleren Abstände betragen: Ge^[6]—O = 1,863, Ge^[4]—O = 1.704 und P—O = 1,525 Å.

Einleitung

Bei kristallchemischen Untersuchungen im System GeO_2 — P_2O_5 fanden *Völlenkle, Wittmann* und *Nowotny*¹ eine hexagonale Phase, die sie röntgenographisch an Hand von Pulver- und Einkristallaufnahmen charakterisierten und für die sie Isotypie mit einer analogen Siliciumverbindung feststellten. Für diese Verbindung wurde eine Zusammensetzung von $2 \text{ GeO}_2 \cdot P_2O_5$ angenommen, wie sie später auch von Awdujewskaja und Tananajew² angegeben wurde. Lecomte, Boullé, Dorémieux-Morin und Lelong³ hingegen schrieben der gleichen Verbindung die Zusammensetzung $3 \text{ GeO}_2 \cdot 2 P_2O_5$ zu.

Die isotype Siliciumverbindung scheint in der Literatur ebenfalls immer unter einer dieser beiden Formeln auf, nur *Liebau*, *Bissert* und $K\"{oppen^4}$ nehmen einen Zusammensetzungsbereich an, der die beiden angegebenen Formeln einschließt.

Die Strukturaufklärung des oben genannten Germaniumphosphats ist besonders im Hinblick auf die Isotypie mit der Siliciumverbindung von strukturchemischem Interesse, da im System SiO_2 — P_2O_5 bereits drei kristalline Phasen bekannt $sind^{5, 6, 7}$, in denen Silicium mit oktaedrischer Sauerstoffkoordination auftritt. Während diese Koordination für Germaniumatome nicht ungewöhnlich ist, wird sie für Siliciumatome unter Normaldruck nur selten beobachtet, wie z. B. im Thaumasit, $Ca_3[Si(OH)_6](SO_4)(CO_3) \cdot 12 H_2O^8$ oder im Pyridinium-tris-(o-phenylendioxy)siliconat⁹.

Experimenteller Teil

Einkristalle der Verbindung wurden in einem geschlossenen System durch Transportreaktion hergestellt. Als Ausgangssubstanzen für die Synthese dienten Germanium(IV)-oxid (99,99% Fluka, Quarzmodifikation) und Orthophosphorsäure (min. 85% Merck) im molaren Verhältnis $GeO_2/P_2O_5 = 2/1$. Die Komponenten der Einwaage wurden mit einer Platinspatel gut vermengt und bei etwa 20 °C an der Luft getrocknet. Etwa 0,5 g dieses Produktes wurden in einem Platinröhrchen (60 mm Länge, 5 mm Durchmesser) verschlossen und bei Atmosphärendruck in ein Quarzrohr eingeschmolzen. In einem Röhrenofen wurde die Substanz, die sich in der heißesten Zone befand, in einer Stunde von 600 auf 1100 °C erhitzt, 2 Stdn. bei dieser Temp. belassen und danach innerhalb 20 Min. auf Raumtemp. abgekühlt. Der Temperaturgradient entlang des Röhrchens betrug etwa 30°/cm. Im Platinröhrchen schieden sich in der ganzen Länge gut ausgebildete Kristalle der gewünschten Verbindung ab. Daneben wurden noch geringe Mengen von nicht umgesetztem GeO₂ (Quarzmodifikation) röntgenographisch nachgewiesen.

Die bisher im Temperaturbereich von 1000 bis 1100 °C hergestellten Proben zeigen auf den Pulveraufnahmen alle das gleiche Linienmuster und lassen keinen Schluß auf einen Zusammensetzungsbereich zu, wie er von Liebau et al.⁴ für das analoge Siliciumphosphat beschrieben wurde.

Die farblosen, durchsichtigen und plättchenförmigen Kristalle hatten pseudohexagonalen Habitus und zeigten durchwegs die Flächenkombination Pinakoid/Rhomboeder. Die Kristalle erwiesen sich als optisch einachsig mit negativem Charakter der Doppelbrechung.

Die Bestimmung der Kristalldaten und der Kristallstruktur erfolgte an einem solchen pseudohexagonalen Plättchen mit der Seitenlänge 0,06 mm und der Höhe 0,025 mm.

Die Gitterkonstanten der hexagonalen Elementarzelle der Verbindung

Monatshefte für Chemie, Bd. 103/6

wurden aus *Buerger*-Präzessionsaufnahmen (MoK α -Strahlung) bestimmt und bestätigen die früher gefundenen Werte¹:

$$a = 7,994 \pm 0,004$$
 und
 $c = 24,87 \pm 0,01$ Å
 $c/a = 3,11.$

Die exper. Dichte (Mittelwert aus 5 pyknometr. Messungen) beträgt 3,432 g \cdot cm⁻³. Dieser Wert stimmt ausgezeichnet mit der röntgenographischen Dichte (3,433 g \cdot cm⁻³) überein, die mit der aus der Strukturbestimmung erhaltenen Zusammensetzung von 5 GeO₂ \cdot 3 P₂O₅ und Z = 3 berechnet wurde. Weissenberg-Aufnahmen um [001] (CuK α -Strahlung; 0. bis 24. Schichtebene) zeigen nur Reflexe, die der Bedingung — h + k + l = 3n genügen. Dies führt zum Beugungssymbol R... und stellt die wahrscheinlichen Raumgruppen R3—C₃⁴, R3—C₃², R32—D₃⁷, R3m—C₄⁵ und R3m—D_{3d}⁵ zur Diskussion. Die Intensitäten wurden durch visuellen Vergleich mit einer vom selben Kristall hergestellten Schwärzungsskala ermittelt. Für die Strukturanalyse wurden insgesamt 467 voneinander unabhängige Reflexintensitäten der asymmetrischen Einheit des reziproken Gitters erfaßt; das sind 72% der durch die Aufnahmen prinzipiell erfaßbaren Reflexe. Bei der Umrechnung der Intensitäten in Strukturfaktoren F₀ (Datenreduktion) erfolgte eine Korrektur der Intensitätswerte mit *Lorentz*- und Polarisationsfaktoren.

Bestimmung und Verfeinerung der Kristallstruktur

Die Positionen der Germanium- und Phosphoratome in der Kristallstruktur wurden aus einer dreidimensionalen zugespitzten *Patterson*-Synthese abgeleitet. Alle starken Maxima der *Patterson*-Synthese lassen sich durch eine entsprechende Anordnung von 15 Germanium- und 18 Phosphoratomen in der Elementarzelle (Raumgruppe $\overline{R3}$) eindeutig interpretieren. Das daraus resultierende Verhältnis $GeO_2: P_2O_5$ von 5:3 liegt zwischen den beiden in der Literatur angegebenen Werten von 2:1 und 3:2.

Tabelle 1. Verfeinerte Atomparameter und isotrope Temperaturkoeffizienten für Ge50[PO4]6; Raumgruppe R3-C²_{3i}; Standardabweichungen der letzten Stellen in Klammern

Atom	Punktlage	x	y	z	B (Å ²)
Ge (1)	3 (a)	0	0	0	0,815 (73)
Ge(2)	6 (c)	0	0	0,1767(1)	0,674 (60)
Ge(3)	6 (c)	0	0	0,4327(1)	0,757 (61)
ΡÚ	18 (f)	0,2892 (6)	0,2668 (6)	0,0915(2)	0,738 (75)
O (1)	3 (b)	0	0	1/2	0,417(372)
O(2)	18 (f)	0,1347 (17)	0,2222 (17)	$0, 1\bar{3}34$ (5)	1,459 (203)
O (3)	18 (f)	0,2185(17)	0,1439(16)	0,0412 (5)	1,224 (186)
O(4)	18 (f)	0,3616(17)	0,4832 (18)	0,0738 (5)	1,459 (190)
O (5)	18 (f)	0,4513 (15)	0,2462 (15)	0,1128(5)	0,814(171)

								······		_	
h	$k \ l$	$ F_0 $	$ F_{\rm e} $	h	$k \ l$	$ F_0 $	$ F_{\rm e} $	h	$k \ l$	$ F_0 $	$ F_{\rm c} $
1	10	241	356	3	42	119	113	4	3 4	38	46
4	10	318	347	6	4 2	64	66	2	44	165	173
2	5 0	218	178	-2	$5\ 2$	113	116	5	44	94	87
5	5 0	141	128	1	$5\ 2$	149	141		54	102	103
0	60	231	211	1	$6\ 2$	53	54	-6	84	74	64
3	60	146	132	6	72	98	99		94	81	84
7	10	173	142	— 3	72	69	60	2	05	344	409
2	$2 \ 0$	197	252	-5	$8\ 2$	90	79	5	05	228	216
5	$2 \ 0$	312	266	-2	$8\ 2$	159	132	8	05	100	98
0	3 0	253	338	6	$10\ 2$	60	66	0	1 5	335	310
3	3 0	356	391	3	03	160	193	3	$1 \ 5$	278	276
6	30	95	118	1	13	108	108	6	15	152	144
1	4 0	318	322	4	$1 \ 3$	142	118	1	25	129	135
4	$4 \ 0$	278	230	7	$1 \ 3$	125	114	4	25	198	179
1	70	260	239	1	$2 \ 3$	275	383	7	25	140	134
1	0 1	97	116	2	$2 \ 3$	61	78		35	112	113
4	01	55	56	5	$2 \ 3$	124	120	2	35	187	206
5	11	42	51	0	$3 \ 3$	45	45	5	3 5	115	103
0	$2\ 1$	100	120	3	$3 \ 3$	197	181	-3	45	176	173
3	$2\ 1$	83	84	-2	43	146	155	3	45	135	120
6	$2\ 1$	78	68	4	43	69	57	6	45	100	130
-2	$3\ 1$	118	123	-4	53	102	94	-2	55	265	294
1	$3\ 1$	69	70	-1	$5\ 3$	163	147	1	$5^{\circ}5$	244	277
4	31	124	110	5	$5\ 3$	28	22	4	55	136	127
1	4 Ì	51	47		63	86	78	4	65	198	184
3	51	63	60	0	$6\ 3$	150	129		65	279	270
0	$5\ 1$	102	99	3	63	94	85	2	65	111	103
3	51	85	84	-2	73	105	100	-3	75	74	64
-5	61	80	80	1	73	114	95	0	75	70	63
4	71	88	69	-7	83	88	86	5	85	215	190
4	10 1	52	52		83	117	101	2	85	157	151
2	$0\ 2$	104	121	5	10 3	109	116	1	85	93	106
5	0 2	137	137	4	04	52	55	7	95	142	135
8	02	72	73	2	14	152	167	-4	95	119	111
0	12	143	143	5	14	74	70	1	95	104	106
1	$2 \ 2$	122	130	3	2 4	34	27	6	105	79	88
3	42	165	183	-2	3 4	42	37	3	06	209	195
0	42	132	137	1	34	48	44	1	16	153	162

Tabelle 2. Beobachtete und berechnete Strukturamplituden für $${\rm Ge}_5{\rm O}[{\rm PO}_4]_6$$

Tabelle 2 (Fortsetzung)

$ F_{\rm c} $	$ F_0 $	$h \ k \ l$	$ F_{\rm c} $	$ F_0 $	h k l	$ F_{c} $	$ F_0 $	k l	h
100	97	119	202	192	567	59	55	16	4
25	24	719	173	196	-267	109	112	16	7
140	128	-129	66	59	167	229	214	26	-1
87	83	229	77	74	477	193	193	26	2
82	94	039	162	162	-177	146	160	36	0
109	109	339	69	68	277	59	66	36	3
20	24	639	102	115	-687	118	128	36	6
25	22	-249	91	98	387	135	134	4 6	-2
40	41	149	71	75	087	51	51	46	1
$\overline{78}$	78	449	126	99		82	77	56	4
42	38	459	. 99	106	-597	66	58	56	1
63	58	-159	75	68	-297	118	115	56	2
40	42	259	256	237	208	26	28	56	5
40	50	3 6 9	173	180	508	68	66	66	3
55	54	369	105	103	808	140	162	66	0
95	102	-279	145	136	018	57	52	66	3
104	95	-789	76	78	318	101	85	76	5
63	63	-699	117	112	618	52	58	76	2
23	24	-399	117	117	$1\ 2\ 8$	43	40	86	1
55	48	1010	114	121	428	76	70	96	6
155	167	4010	72	68	728	47	47	96	3
62	68	7 0 10	154	150	-138	69	67	10 6	
51	47	5110	77	85	$2\ 3\ 8$	223	193	07	1
32	29	-2310	80	64	538	157	150	07	4
93	103	1 3 10	284	279	-348	85	85	07	7
90	90	4 3 10	137	139	048	188	214	17	2
120	109	2410	153	156	348	93	89	17	5
70	67		212	239	-258	78	57	17	8
58	61	0510	256	264	158	199	211	27	0
54	56	-2610	68	56	268	298	283	$2\ 7$	3
55	55	1610	71	61	-678	161	168	27	6
34	30	0810	90	96	378	314	323	37	-2
213	247	2011	107	115	078	75	68	37	. 1
93	96	5011	169	183	588	124	136	47	1
106	97	8011	148	158	-288	117	133	47	2
42	24	0 1 11	76	62	188	83	77	47	5
209	219	3 1 11	37	32	798	134	126	57	3
97	96	6111	63	61	-498	250	269	57	0
273	281	1211	60	67	309	194	195	57	3

Tabelle 2 (Fortsetzung)

$ F_{ m c} $	$ F_0 $	h k l	$ F_{ m c} $	$ F_0 $	h k l	$ F_{ m c} $	$ F_0 $	h k l
65	78	6015	74	76	3612	53	52	4 2 11
28	28	1 1 15	69	70	-5712	85	67	7211
28	20 25	4 1 15	142	139	-2712	203	197	-1311
85	6 0	7 1 15	139	132	1712	73	62	2311
177	188	-1215	168	142	-7812	150	154	5311
148	148	2 2 15	147	162	-4812	311	304	-3411
56	58	5 2 15	119	94	-1812	257	303	0411
202	147	0315	123	56	-6912	126	126	3 4 11
136	141	3 3 15	98	96	-3912	105	105	1511
60	60	-2415	86	71	1 0 13	79	70	4 5 11
109	127	1 4 15	39	40	4 0 13	54	52	-4611
126	125	4 4 15	22	29	2 1 13	52	53	-1611
159	178		32	28	5 1 13	110	104	2611
67	68	-1515	93	92	0 2 13	182	192	-6711
57	58		154	150	3213	184	186	-3711
92	91	-3615	154	176	-2313	203	208	0711
88	110	0 6 15	45	44	2 4 13	92	89	5 8 11
117	130	-5715	51	54	3 5 13	85	79	-2811
103	121	-2715	114	116	0 5 13	61	47	-7911
76	79	1715	119	111	3 5 13	80	71	-4911
136	141	-7815	142	133	-5613	332	298	3 0 12
56	50	-1815	34	40	-2613	194	200	$6 \ 0 \ 12$
81	78	-4 8 15	29	29	-4713	212	238	$1 \ 1 \ 12$
129	124	1016	132	131	2014	170	169	$4\ 1\ 12$
64	64	4016	59	50	5014	71	58	$7\ 1\ 12$
84	81	7016	61	51	0 1 14	114	129	-1212
258	256	2 1 16	48	37	6 1 14	100	110	$2\ 2\ 12$
218	240	5116	110	109	4 2 14	137	139	$5\ 2\ 12$
314	287	0 2 16	28	27	-1314	319	298	$0\ 3\ 12$
186	186	3 2 16	83	90	-3 4 14	90	104	$3\ 3\ 12$
139	128	6216	67	63	3 4 14	68	54	$6\ 3\ 12$
215	220	-2316	193	207	-2514	204	252	-2412
163	154	1 3 16	106	109	1514	197	197	$1 \ 4 \ 12$
238	231		76	82	-4614	152	162	4 4 12
196	208	2 4 16	21	26	-6714	139	143	-4512
206	208	-3 5 16	46	46	-3714	154	179	-1512
136	150	$0\ 5\ 16$	87	88	_5814	118	120	$2\ 5\ 12$
146	140	$3\ 5\ 16$	84	83	-2814	86	104	-3612
189	187	5616	179	147	3 0 15	129	142	$0\ 6\ 12$

Tabelle 2 (Fortsetzung)

$h \ k \ l$	$ F_0 $	$ F_{c} $	h k l	$ F_0 $	$ F_{\rm c} $	$h \ k \ l$	$ F_0 $	$ F_{\rm c} $
-2 6 16	127	113	-3 6 18	98	99	1 4 21	84	83
1 6 16	94	93	0618	89	88	-4521	97	103
-4716	121	108	-5718	129	142	-1 5 21	35	34
-1716	151	143	-2718	58	66	$2\ 5\ 21$	47	45
-6816	128	134	-4818	55	65	3 6 21	73	70
-3816	99	113	1019	18	21	0 6 21	61	55
$2 \ 0 \ 17$	37	42	2 1 19	94	97	-5721	60	62
$5 \ 0 \ 17$	133	125	5119	65	69	-2721	54	46
0117	69	91	0 2 19	26	10	1 0 22	128	122
$3\ 1\ 17$	25	30	3 2 19	56	60	4 0 22	88	80
$6\ 1\ 17$	88	93	-2 3 19	119	116	2 1 22	56	60
$1\ 2\ 17$	99	104	1 3 19	34	35	-2322	33	28
$4\ 2\ 17$	86	82	2 4 19	34	31	$1 \ 3 \ 22$	87	77
-1 3 17	226	194	0519	45	40	4 3 22	89	115
$2 \ 3 \ 17$	107	104	3519	36	46	-1 4 22	50	48
-3417	58	57	-5619	28	31	-2622	61	59
$0 \ 4 \ 17$	55	57	2 0 20	125	121	-4722	47	48
-2517	107	9 6	5020	99	99	$2 \ 0 \ 23$	178	158
-4617	107	115	0 1 20	92	90	$5\ 0\ 23$	135	136
-1617	122	119	3 1 20	45	50	$0\ 1\ 23$	226	260
$2\ 6\ 17$	55	65	6 1 20	47	50	3 1 23	157	145
-6717	4 9	49	1 2 20	162	141	$1 \ 2 \ 23$	196	199
-3717	40	39	4 2 20	86	94	4 2 23	192	182
$0\ 7\ 17$	30	27	-1 3 20	51	51	-1 3 23	99	99
-5817	48	44	2 3 20	83	79	2 3 23	157	153
-2817	74	81	-3420	36	35	3 4 23	165	169
$6\ 0\ 18$	85	76	3 4 20	85	88	0423	226	198
1 1 18	99	104	-2520	183	188	3 4 23	202	169
4 1 18	100	94	1 5 20	83	85	-2523	222	200
-1218	206	231	-1 6 20	34	37	$1\ 5\ 23$	119	132
$2\ 2\ 18$	219	194	6 7 20	52	55	-4 6 23	130	126
$5\ 2\ 18$	91	96	-3720	47	48	-1623	44	57
$0\ 3\ 18$	170	149	3 0 21	143	133	-3723	156	219
$3 \ 3 \ 18$	98	102	6 0 21	38	45	1 1 24	33	35
-2 4 18	93	89	-1 2 21	92	105	-1224	80	84
1418	63	64	2 2 21	76	68	$2\ 2\ 24$	85	77
$4 \ 4 \ 18$	53	58	5 2 21	47	64	-2424	27	33
-4518	134	122	0 3 21	173	167	1 4 24	35	34
-1518	125	118	$3 \ 3 \ 21$	92	96	-1524	35	34
$2\ 5\ 18$	54	63	-2421	65	62			

1566

Die Einbeziehung der 75 Sauerstoffatome gelang unter der Annahme von tetraedrischer und oktaedrischer Sauerstoffkoordination für die Germaniumatome sowie tetraedrischer Sauerstoffkoordination für das Phosphoratom in der Raumgruppe R3. Mit den Atomparametern dieses geometrisch abgeleiteten Strukturmodells ergab die Strukturfaktor-Rechnung unter Berücksichtigung individueller Skalierungsfaktoren für die einzelnen reziproken Schichtebenen einen R-Wert von 0,20.

Abb. 1. Dreidimensionale Fourier-Synthese für $Ge_5O[PO_4]_6$; Lage der Maxima in der asymmetrischen Einheit durch entsprechende Schnitte parallel (xy) dargestellt; die Linien der Elektronendichte sind in Intervallen von 5e/Å³ gezeichnet, beginnend mit 5e/Å³; für die Ge-Atome ist nur jede zweite Dichtelinie eingezeichnet

Eine Verfeinerung der freien Parameter der Struktur erfolgte nach der Methode der kleinsten Quadrate unter Berücksichtigung isotroper Temperaturfaktoren für jede Atomlage und getrennter Skalierungsfaktoren* für die einzelnen Schichtlinien. Die Rechnung wurde mit dem Gewichtsschema¹⁰ $w = 1/(40 | F_0 | + 0,005 | F_0 |^2)$ und den Atomformfaktoren für neutrale Atome¹¹ durchgeführt. Nach 6 Verfeinerungszyklen waren die neu errechneten Parameterkorrekturen gegenüber den Standardabweichungen zu vernachlässigen und der R-Wert** betrug 0,086.

Die verfeinerten Atomparameter und die isotropen Temperaturkoeffizienten sind in Tab. 1 zusammengestellt. Tab. 2 bringt einen Ver-

**
$$\mathbf{R} = \Sigma \parallel F_0 \mid \dots \mid F_e \parallel \Sigma \mid F_0 \mid.$$

^{*} $\mathbf{K} = \Sigma \mid F_{\mathbf{e}} \mid / \Sigma \mid F_{\mathbf{0}} \mid.$

gleich der beobachteten und berechneten Strukturamplituden nach dem letzten Verfeinerungszyklus.

Eine mit den Phasen der verfeinerten Atomparameter berechnete dreidimensionale *Fourier*-Synthese ist in Abb. 1 wiedergegeben.

Diskussion der Kristallstruktur

Auf Grund der Strukturbestimmung besitzt das untersuchte Germaniumphosphat die Zusammensetzung $5 \text{ GeO}_2 \cdot 3 \text{ P}_2 \text{O}_5$ und ist als Pentagermanium-oxidhexaphosphat, $\text{Ge}_5 \text{O}[\text{PO}_4]_6$, zu formulieren.

In dieser Struktur hat das Germaniumatom gegenüber Sauerstoff die Koordinationszahlen 4 und 6. Das Verhältnis von tetraedrisch zu oktaedrisch koordinierten Germaniumatomen beträgt 2:3. Die oktaedrisch koordinierten Germaniumatome (Punktsymmetrie $\overline{3}$ und 3) bilden singuläre Oktaeder, während die tetraedrisch koordinierten Germaniumatome (Punktsymmetrie 3) über ein gemeinsames Sauerstoffatom zu einer Doppeltetraedergruppe verbunden sind (schraffierte Polyeder in Abb. 2). Da die Ge-Atome ausschließlich spezielle Punktlagen auf den dreizähligen Inversionsachsen besetzen, ergibt sich in dieser Richtung eine sich wiederholende Abfolge von jeweils drei singulären [GeO₆]-Gruppen und einer [Ge₂O₇]-Gruppe. Diese Anordnung wird durch Orthophosphat-Gruppen, die sich entlang [001] nach einer dreizähligen Schraubenachse wiederholen, zu einem dreidimensionalen Strukturverband verknüpft. Die [PO₄]-Gruppen verbinden jeweils zwei in einer dreizähligen Inversionsachse übereinanderliegende [GeO₆]-Oktaeder mit je einem [GeO₆]-Oktaeder und einem [GeO₄]-Tetraeder auf benachbarten dreizähligen Inversionsachsen. In der Schreibweise nach Machatschki¹² kann die Verbindung demnach wie folgt charakterisiert werden:

 $^{3}_{\infty}$ Ge₃^[6]Ge₂^[4]O[PO₄]₆ rhd.

Wie aus den interatomaren Abständen und Winkeln in Tab. 3 ersichtlich ist, sind die Ge-Atome mit 6er-Koordination von den Sauerstoffatomen in Form von nahezu regulären Oktaedern umgeben. Der mittlere oktaedrische Ge—O-Abstand von 1,863 Å stimmt mit einem aus 5 Strukturen gebildeten Mittelwert von 1,887 Å gut überein. Der mittlere tetraedrische Ge—O-Abstand hingegen liegt mit 1,704 Å etwas unter einem aus 10 Strukturen erhaltenen Mittelwert von 1,746 Å. Ebenso ist der mittlere P—O-Abstand mit 1,525 Å etwas kleiner im Vergleich mit einem für 14 Strukturen mit Orthophosphat-Gruppen angegebenen Mittelwert von 1,55 Å¹³.

Bemerkenswert ist der Bindungswinkel von 180° am Brückensauerstoffatom O(1) zwischen den beiden [GeO₄]-Tetraedern, der sich in dieser Punktlage zwangsläufig aus der Punktsymmetrie $\bar{3}$ dieses Atoms ergibt. Dies ist besonders im Hinblick auf die isotype Siliciumverbindung von Interesse. Wie *Liebau*¹⁴ in einer eingehenden Diskussion über die Möglichkeit des Auftretens von "gestreckten Si—O—Si-Bindungen" zeigte, sollten in kristallinen Silicaten zumindest unter normalen energetischen

Abb. 2. Ausschnitt aus der Kristallstruktur von $Ge_5O[PO_4]_6$; Verknüpfung der Koordinationspolyeder in dreidimensionaler Darstellung ([GeO_n]-Polyeder schraffiert)

Bedingungen keine derartigen Bindungen möglich sein. Tatsächlich konnten bisher weder in Silicaten noch in Germanaten "gestreckte" Si—O—Si- bzw. Ge—O—Ge-Bindungen mit Sicherheit nachgewiesen werden. Auch in dieser Kristallstruktur ist ein etwaiges Abweichen des Brückensauerstoffatoms O(1) aus der speziellen Punktlage 3(b) nicht ganz auszuschließen, obwohl mit den vorliegenden Daten auch aus Differenz-*Fourier*-Synthesen keine derartige Abweichung zu erkennen ist. Der Mittelwert für den Ge^[6]—O—P-Bindungswinkel weist mit 140,4° einen niedrigeren Wert auf als die entsprechenden Mittelwerte

Tabelle 3.	Interatomare	Abstände ((Å) und	Winkel	(Grad)	für
$Ge_5O[PO_4]_6$	3; Standardab	weichungen	der	letzten	Stellen	in
		Klammer	n			

[Ge(1)O ₆]-Oktae	der:				
Ge(1)O(3 ^I)	1,848 (13)	(6×)	$\begin{array}{l} O(3^{I}) &Ge(1)O(3^{II}) \\ O(3^{I}) &Ge(1)O(3^{V}) \\ O(3^{I}) &Ge(1)O(3^{IV}) \end{array}$	$\begin{array}{c} 180,0 \ (6) \\ 92,2 \ (6) \\ 87,8 \ (6) \end{array}$	(3 imes) (6 imes) (6 imes)
[Ge(2)O ₆]-Oktae	der:				
Ge(2)— $O(2I)Ge(2)$ — $O(5I)Mittelwert$	1,886 (14) 1,855 (12) 1,871	(3×) (3×)	$\begin{array}{c} O(2^{I})Ge(2)O(2^{II}) \\ O(2^{I})Ge(2)O(5^{I}) \\ O(2^{I})Ge(2)O(5^{II}) \\ O(2^{I})Ge(2)O(5^{III}) \\ O(5^{I})Ge(2)O(5^{II}) \end{array}$	$\begin{array}{c} 90,7 \ (6) \\ 89,8 \ (6) \\ 90,6 \ (6) \\ 178,6 \ (6) \\ 88,9 \ (5) \end{array}$	$(3 \times)$ $(3 \times)$ $(3 \times)$ $(3 \times)$ $(3 \times)$
[Ge(3)O ₄]-Tetra	eder:				
${f Ge}(3) - O(1) \ {f Ge}(3) - O(4^{I})$	1,673 (3) 1,714 (14)	$(1 \times)$ $(3 \times)$	$\begin{array}{c} \mathrm{O}(4^{\mathrm{I}}) & - \mathrm{Ge}(3) & - \mathrm{O}(4^{\mathrm{II}}) \\ \mathrm{O}(1) & - \mathrm{Ge}(3) & - \mathrm{O}(4^{\mathrm{I}}) \end{array}$	111,8 (6) 107,0 (5)	(3 imes) $(3 imes)$
Mittelwert	1,704		Mittelwert	109,3	
[PO ₄]-Tetraeder	:				
P-O(2) $P-O(3^{1})$ $P-O(4^{1})$ P-O(5) Mittelwert	$\begin{array}{c} 1,517 \ (14) \\ 1,514 \ (14) \\ 1,587 \ (14) \\ 1,483 \ (13) \\ 1,525 \end{array}$	$(1 \times)$ $(1 \times)$ $(1 \times)$ $(1 \times)$	$\begin{array}{l} O(2^{I}) & - P - O(3^{I}) \\ O(2^{I}) & - P - O(4^{I}) \\ O(2^{I}) & - P - O(5^{I}) \\ O(3^{I}) & - P - O(4^{I}) \\ O(3^{I}) & - P - O(5^{I}) \\ O(4^{I}) & - P - O(5^{I}) \\ Mittelwert \end{array}$	114,8 (8) 104,9 (7) 112,4 (7) 107,0 (7) 106,6 (7) 110,9 (7) 109,4	$(1 \times)$ $(1 \times)$ $(1 \times)$ $(1 \times)$ $(1 \times)$ $(1 \times)$

für die Si^[6]—O—P-Winkel in den Siliciumdiphosphaten Si $[P_2O_7]$ AIII mit 144,3°⁶ und Si $[P_2O_7]$ AIV mit 143,1°⁷.

Dem Institutsvorstand, Herrn Prof. Dr. A. Wittmann, danken wir für die Förderung dieser Arbeit.

Die Rechenarbeiten konnten mit der Rechenanlage IBM 7040 des Institutes für numerische Mathematik der Technischen Hochschule Wien durchgeführt werden, wofür wir dem Vorstand dieses Institutes, Herrn Prof. Dr. *H. Stetter* danken. Der Österreichischen Nationalbank danken wir für die finanzielle Unterstützung bei der Anschaffung wissenschaftlicher Geräte.

Literatur

H. Völlenkle, A. Wittmann und H. Nowotny, Mh. Chem. 94, 819 (1963).
 K. A. Awdujewskaja und I. W. Tananajew, J. neorgan. Chim. 10, 366 (1965).

³ J. Lecomte, A. Boullé, C. Dorémieux-Morin und B. Lelong, C. r. hebdomad. Sé. acad. Sci. Paris 258, 1447 (1964).

⁴ F. Liebau, G. Bissert und N. Köppen, Z. anorg. allgem. Chem. **359**, 113 (1968).

⁵ G. R. Levi und G. Peyronel, Z. Kristallogr. 92, 190 (1935).

⁶ G. Bissert und F. Liebau, Acta Cryst. [Kopenhagen] B 26, 233 (1970).

⁷ F. Liebau und K.-F. Hesse, Z. Kristallogr. 133, 213 (1971).

⁸ R. A. Edge und H. F. W. Taylor, Acta Cryst. [Kopenhagen] B 27, 594 (1971).

⁹ J. J. Flynn und F. P. Boer, J. Amer. Chem. Soc. 91, 5756 (1969).

¹⁰ D. W. J. Cruickshank, in: Computing methods in crystallography, S. 112. (Rollett, J. S., Hrsg.). Oxford: Pergamon Press. 1965.

¹¹ International tables for x-ray crystallography, Vol. 3. Birmingham: The Kynoch Press. 1962.

¹² F. Machatschki, Grundlagen der allgemeinen Mineralogie und Kristallchemie. Wien: Springer. 1946.

¹³ F. Liebau, Fortschr. Miner. 42, 266 (1966).

¹⁴ F. Liebau, Acta Cryst. [Kopenhagen] 14, 1103 (1961).